On the existence and number of (k+1)-kings in k-quasi-transitive digraphs
نویسندگان
چکیده
Let D = (V (D), A(D)) be a digraph and k ≥ 2 an integer. We say that D is k-quasi-transitive if for every directed path (v0, v1, . . . , vk) in D, then (v0, vk) ∈ A(D) or (vk, v0) ∈ A(D). Clearly, a 2-quasi-transitive digraph is a quasi-transitive digraph in the usual sense. Bang-Jensen and Gutin proved that a quasi-transitive digraph D has a 3king if and only if D has a unique initial strong component and, if D has a 3-king and the unique initial strong component of D has at least three vertices, then D has at least three 3-kings. In this paper we prove the following generalization: A k-quasi-transitive digraph D has a (k+ 1)-king if and only if D has a unique initial strong component, and if D has a (k+1)-king then, either all the vertices of the unique initial strong components are (k + 1)-kings or the number of (k + 1)-kings in D is at least (k + 2).
منابع مشابه
On the existence of (k, l)-kernels in infinite digraphs: A survey
Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent (if u, v ∈ N , u 6= v, then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l) set of vertices. A k-kernel is a (k, k− 1)-kernel. This work is a survey of results proving sufficient conditions for the exist...
متن کاملK-kernels in K-transitive and K-quasi-transitive Digraphs
Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent (if u, v ∈ N then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l) set of vertices. A k-kernel is a (k, k − 1)-kernel. A digraph D is transitive if (u, v), (v, w) ∈ A(D) implies that (u,w) ∈ A(D). This co...
متن کاملKernels by Monochromatic Directed Paths In m-Colored Digraphs With Quasi-Transitive Chromatic Classes
In this paper, we give sufficient conditions for the existence of kernels by monochromatic directed paths (m.d.p.) in digraphs with quasi-transitive colorings. Let D be an m-colored digraph. We prove that if every chromatic class of D is quasi-transitive, every cycle is quasitransitive in the rim and D does not contain polychromatic triangles, then D has a kernel by m.d.p. The same result is va...
متن کامل4-transitive digraphs I: the structure of strong 4-transitive digraphs
Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A digraph D is transitive if for every three distinct vertices u, v, w ∈ V (D), (u, v), (v, w) ∈ A(D) implies that (u,w) ∈ A(D). This concept can be generalized as follows: A digraph is k-transitive if for every u, v ∈ V (D), the existence of a uv-directed path of length k in D implies that (u, v) ∈...
متن کاملK-kernels in Generalizations of Transitive Digraphs
Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent set of vertices (if u, v ∈ N , u 6= v, then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l). A k-kernel is a (k, k − 1)-kernel. Quasi-transitive, right-pretransitive and left-pretransitive digraphs are g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1206.1897 شماره
صفحات -
تاریخ انتشار 2012